友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
一世书城 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

从一到无穷大-第4章

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



  可见,谈到推导能自动给出直到任意大的所有质数的公式的问题,从现在来看,我们离这一步还远得很哩!目前我们甚至连到底存在不存大这样的公式,也都还没有把握呢!
  现在,让我们换个小一点的问题看一看--在给定的范围内质数所能占的百分比有多大。这个比值是随着数的增长加大还是减小,或者是近似为常数呢?我们可以用经验的方法,即通过查找各种不同数值范围内质数数目的方法,来解决这个问题。这样,我们查出,100之内有26个质数,在1;000之内有168个,在1;000;000之内有78;498个,在1;000;000;000之内有50;847;478个。把质数个数除以相应范围内的整数个数,得出下表:
  
  数值范围   质数数目   比率    1/ln(n) 偏差(
  %)
  1-100      26      0。260   0。217   20
  1-1000     168      0。168   0。145   16
  1-exp(10;6)  78;498     0。078498  0。072382  8
  1-exp(10;9)  50,847,478  0。050847478  5
  
  从这张表上首先可以看出,随着数值范围的扩大,质数的数目相对减少了。但是,并不存在质数的终止点。
  有没有一个简单方法可以用数学形式表示这种质数比值随范围的扩大而减小的现象呢?有的。并且,这个有关质数平均颁的规律已经成为数学上最值得称道的发现之一。这条规律很简单。就是:从1到任何自然数N之间所含质数的百分比,近似由N的自然对数的倒数所表示。N越大,这个规律就越精确。
  从上表的第四栏,可以看到N的自然对数的倒数。把它们和前一栏对比一下,就会看出两者是很相近的,并且,N越大,它们也就越相近。
  有许多数论上的定理,开始时都是凭经验作为假设提出,而在很长一段时间内得不到严格的证明的。上面这个质数定理也是如此。直到上世纪末,法国数学家阿达马(Jacques Solomon Hadamard)和比利时数学家布散(deLa Vallee Poussin)才终于证明了它。由于证明的方法太繁难,我们这里就不介绍了。
  既然谈到整数,就不能不提一提著名的费马大数定理,尽管这个定理和质数没有必然的联系。要研究这个问题,先要回溯到古埃及。古埃及的每一个好木匠都知道,一个边长为3:4:5的三角形中,必定有一个角是直角。现在有人把这样的三角形叫做埃及三角形。古埃及的木匠就是用它作为自己的三角尺的。
  


 作者:wyhsillypig  回复日期:2004…12…23 21:06:00  

  公元三世纪,亚历山大里亚城的刁番都(Diophante)开始考虑这样一个问题:从两个整数的平方和等于另一整数的平方这一点来说,具有这种性质的是否只有3和4这两个整数?他证明了还有其他具有同样的整数(实际上有无穷多组)并给出了求这些数的一般规则。这类三个边都是整数的直角三角形称为毕达哥拉斯三角形。简单说来,求这种三角形的三边就是解方程
   exp(x;2)+exp(y;2)=exp(z;2)
  式中的x,y,z必须是整数。
  1621年,费马在巴黎买了一本刁番都所著〖算术学〗的法文译本,里面提到了毕达哥拉斯三角形。当费马读这本书的时候,他在书的空白处作了一些简短的笔记,并且指出,
   exp(x;2)+exp(y;2)=exp(z;2)
  有无穷多组整数解,而形如
   exp(x;n)+exp(y;n)=exp(z;n)
  的方程,当n大于2时,永远没有整数解。
  他后来说:“我当时想出了一个绝妙的证明方法,但是书上的空白太窄了,写不完。”
  费马死后,人们在他的图书室里找到了刁番都的那本书,里面的笔记也公诸于世了。那是在三个世纪以前。从那时候以来,各国最优秀的数学家们都尝试重新作出费马写笔记时所想到的证明,但至今都没有成功。当然,在这方面已有相当大的进展,一门全新的数学分支--“理想数论”--在这个过程中创建起来了。欧拉证明了,方程
  
  exp(x;3)+exp(y;3)=exp(z;3)
  和
  exp(x;4)+exp(y;4)=exp(z;4)
  
  不可能有整数解。狄里克莱(Peter Gustav Lejeune Dirichlet)证明了exp(x;5)+exp(y;5)=exp(z;5)也是这样。依靠其它一些数学家的共同努力,现在已经证明,在N小于269的情况下,费马的这个方程都没有整数解。不过,对于指数N在任何值下都成立的普遍证明,却一直没能作出。人们越来越倾向于认为,费马不是根本没有进行证明,就是在证明过程中有什么地方搞错了。为征求这个问题的解答,曾经悬赏过十万马克。那时,研究这个问题的人真是不少,不过,这些拜金的业余数学家都一事无成。
  这个定理仍然有可能是错误的,只要能找到一个实例,证实两个整数的某一次幂的和等于另一个整数的同一次幂的和就行了。不过,这个幂次一定要在比269大的数目中去找,这可不是一件容易事啊。
  (录入者:这个定理于1995年?我记不清了,已经有数学家给出了证明,现在可以肯定地说,费马大定理是正确的了


神秘的sqrt(…1)(根号负一)
  现在,让我们来搞点高级算术。二二得四,三三见九,四四一十六,五五二十五,因此,四的平方根为二,九的平方根为三,十六的平方根是四,二十五的平方根是五。
  然而,负数的平方根是什么样呢?sqrt(…5)和sqrt(…1)之类的表达式有什么意义呢?
  如果从有理数的角度来揣想这样的数,你一定会得出结论说,这样的式子没有任何意义,这是可以引用十二世纪的一位数学家拜斯。迦罗(Brahmin Bhaskara)的话:“正数的平方是正数,负数的平方也是正数。因此,一个正数的平方根是两重的:一个正数和一个负数。负数没有平方根,因为负数并不是平方数。”
  可是数学家的脾气倔强得很。如果有些看起来没有意义的东西不断在数学公式中冒头,他们就会尽可能造出一些意义来。负数的平方根就在很多地方冒过头,既在古老而简单的算术问题上出现,也在二十世纪相对论的时空结合问题上露面。
  第一个将负数的平方根这个“显然”没有意义的东西写到公式里的勇士,是十六世纪的意大利数学家卡尔丹(Cardan)。在讨论是否有可能将10分成两部分,使两者的乘积等于40时,他指出,尽管这个问题没有有理解,然而,如果把答案写成5+sqrt(…15)和5…sqrt(…15)这样两个怪模怪样的表达式,就可以满足要求了。
  尽管卡尔丹认为这两个表达式没有意义,是虚构的、想象的,但是,他毕竟把它们写下来了。
  既然有人敢把负数的平方根写下来,并且,尽管这有点想入非非,却把10分成两个乘起来等于40的事办成了;这样,有人开了头,负数的平方根--卡尔丹给它起了个大号叫“虚数”--就越来越经常地被科学家们所使用了,虽则总是伴有很大保留,并且要提出种种借口。在著名瑞士科学家欧拉1770年发表的代数著作中,有许多地方用到了虚数。然而,对这种数,他又加上了这样一个掣肘的评语:“一切如sqrt(…1)的数学式,都是不可能有的、想象的数,因为它们所表示的是负数的平方根。对于这类数,我们只能断言,它们既不是什么都不是,也不比什么都不是多些什么,更不比什么都是不是少些什么。它们纯属虚幻。”
  但是,尽管有这些非难和遁辞,虚数还是迅速成为分数和根式中无法避免的东西。没有它们,简直可以说寸步难行。
  不妨说,虚数构成了实数在镜子里的幻象。而且,正象我们从基数1可以得到所有实数一样,我们可以把sqrt(…1)作为虚数的基数,从而得到所有的虚数。通常写作i。
  不难看出
  sqrt(…9)=sqrt(9)×sqrt(…1)=3i
  sqrt(…7)=sqrt(7)×sqrt(…1)=2。646…。。i
  …。。
  这么一来,每一个实数都有自己的虚数搭档。此外,实数和虚数结合起来,形成单一的表达式,例如5+sqrt(…15)=5+sqrt(15)i。这种表示方法是卡尔丹发明的,而这种混成的表达式通常称做复数。
  虚数闯进数学的领地之后,足足有两个世纪的时间,一直披着一张神秘的、不可思议的面纱。直到两个业余数学家给虚数作出了简单的几何解释后,这张面纱才被揭去,这两个人是:测绘员威塞尔(Wessel),挪威人;会计师阿尔刚(Robert Argand),法国巴黎人。
  按照他们的解释,一个复数,例如3+4i,可以象图10(录入者,就是一个复平面,这个大家应该都知道了)那样表示出来,其中3是水平方向的座标,4是垂直方向的座标。
  所有的实数(正数和负数)都对应于横轴上的点,而纯虚数则对应于纵轴上的点。当我们把位于横轴上的实数3乘以虚数单位i时,就得到位于纵轴上的纯虚数。因此,一个数乘以i,在几何上相当于逆时针旋转90(见图10)
  如果把再乘以i,则又须再逆转90,这一下又回到横轴上,不过却位于负数那一边了。因为3i×I=3×exp(i;2)=…3
  或exp(i;2)=…1
  “i的平方等于…1”这个说法,比“两次旋转90(都旋时针进行)便变成反向”更容易理解。
  这个规则同样适用于复数。把3+4i乘以i,得到
  (3+4i)I=3i+4exp(i;2)=3i…4=…4+3i
  从图10可立即看出,正好相当于这个点绕原点逆时针旋转了90。同样的道理,一个数乘上…i就是它绕原点顺时针旋转90。这一点从图10也能看出。
  如果你现在仍然觉得虚数带有一张神秘的面纱,那么,让我们通过一个简单的,包含有虚数的实际应用的习题来把这张面纱揭去吧。
  (录入者:乔治先生在下边给出的这个例子中的故事非常有意思,有兴趣的话大家可以自己做一下试验,这非常有助于你对复数的威力的理解)

 作者:wyhsillypig  回复日期:2004…12…25 12:06:00  

  ☆☆☆☆☆☆☆☆☆
  从前,有个富于冒险精神的年轻人,在他曾祖父的遗物中发现了一张羊皮纸,上面指出了一项宝藏。它是这样写着的:
  乘船到北纬(_)、西经(_),即可找到一座荒岛,岛的北岸有一大片草地。草地上有一株橡树和一株松树。还有一座绞架,那是我们过去用来吊死叛变者的。从绞架走到橡树,并记住走了多少步;到了橡树向右拐个直角再走这么多步,在这里打个桩。然后回到绞架那里,朝松树走去,同时记住所走的步数,到松树向左拐个直角再走这么多步。在这里也打个桩。在两个桩的正当中挖掘,就可找到宝藏。
  ☆☆☆☆☆☆☆☆☆
  这道指示很清楚、明白。所以,这位年轻人就租了一条船开往目的地。他找到了这座岛,也找到了橡树和松树。但使他大失所望的是,绞架不见了。经过长时间的风吹日晒,绞架已糟烂成土,一点痕迹与看不出了
  我们这位年轻的冒险家陷入了绝望。在狂乱中,他在地上乱掘起来。但是,地方太大了。一切只是白费力气。他只好两手空空,启帆回程。因此,
返回目录 上一页 下一页 回到顶部 0 0
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!